Wednesday, October 24, 2018

METODE ELIMINASI GOUSS JORDAN

Eliminasi Gauss-Jordan

Thomas (1984:93-94) mengatakan bahwa setiap matriks memiliki bentuk eselon baris tereduksi yang unik, artinya kita akan memperoleh bentuk eselon baris tereduksi yang sama untuk matriks tertentu bagaimanapun variasi operasi baris yang dilakukan.
Langkah-langkah operasi baris yang dikemukakan oleh Gauss dan disempurnakan oleh Jordan sehingga dikenal dengan Eliminasi Gauss-Jordan, sebagai berikut:
1.Jika suatu baris tidak seluruhnya dari nol, maka bilangan tak nol pertama pada baris itu adalah 1. Bilangan ini disebut 1 utama (leading 1).
2.Jika terdapat baris yang seluruhnya terdiri dari nol, maka baris-baris ini akan dikelompokkan bersama pada bagian paling bawah dari matriks.
3.Jika terdapat dua baris berurutan yang tidak seluruhnya dari nol, maka 1 utama pada baris yang lebih rendah terdapat pada kolom yang lebih kanan dari 1 utama pada baris yang lebih tinggi.
4.Setiap kolom memiliki 1 utama memiliki nol pada tempat lain.

Misal kita punya matriks berikut:






No comments:

Post a Comment

GRAFIK TURUNAN LANJUTAN

 1. TURUNKAN PERSAMAAN 2. TURUNKAN PERSAMAAN PERTAMA MENJADI TURUNAN KEDUA  3. CARI TITIK KRITIS DARI TURUNAN ...